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Pull-out of a ductile fibre from a brittle matrix 
P A R T  II A simplified mode/ 

C H U N - H W A Y  HSUEH 
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, 
USA 

The pull-out of a ductile fibre from a brittle matrix was analysed in Part I [1] using a shear-lag 
model. However, the analysis is formidable due to the consideration of Poisson's effect along the 
sliding length. This consideration is essential when the debonded fibre-matrix interface is 
subjected to Coulomb friction during fibre pull-out. To simplify the analysis, Poisson's effect is 
treated in an average sense in the present study, whereas it was treated pointwise in Part I. The 
present simplified solutions are in excellent agreement with the previous more rigorous and more 
complex solutions. The simplified model thus provides adequate solutions for the pull-out of 
a ductile fibre from a brittle matrix, and can be readily used for further applications. 

1. In t roduc t ion  
Interfacial debonding, fibre yielding and necking oc- 
cur during pull-out of a ductile fibre from a brittle 
matrix. When the debonded interface is subjected 
to Coulomb friction, which is proportional to the 
radial compression at the interface, consideration of 
Poisson's effect is essential. During pull-out, the fibre 
is subjected to axial tension, and radial tension is 
induced at the interface due to Poisson's effect, which, 
in turn, modifies the resultant interfacial radial stress. 
In the presence of both Poisson's effect and plasticity 
of the fibre, the stress analysis for the pull-out problem 
was made in Part I [1] using a shear-lag model; 
however, the analysis is formidable. When the pull-out 
analysis is incorporated to solve other problems, the 
complexity in the analysis will be compounded. For 
example, the analysis of the toughening effect due to 
fibre bridging in a ceramic-matrix composite requires 
a double integral of the stress-displacement relation of 
the pull-out fibres along the crack surface [2]. Hence, 
to facilitate the application of the pull-out analysis, 
a simplified analysis is imperative. 

The complexity of the pull-out analysis arises 
mainly from Poisson's effect, which results in a non- 
uniform interfacial shear stress along the sliding 
length. Hence, to simplify the analysis, Poisson's effect 
along the sliding length is not considered pointwise 
but is considered in an average sense in the present 
study. This averaging technique has been successfully 
adopted to analyse pull-out of a brittle fibre from 
a brittle matrix [3]. To justify the applicability of the 
averaging technique to pull-out of a ductile fibre from 
a brittle matrix, the simplified solutions obtained in 
the present study are compared to the previous com- 
plex solutions [1]. Excellent agreement js obtained in 
this comparison. Also, due to the complexity of the 
analyses, the previous model [1] is limited to the 
conditions that the interface has a finite bond strength 
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and the fibre undergoes linear strain hardening. Using 
the present simplified model, the solutions for an un- 
bonded interface and power-law strain hardening of 
the fibre are also obtained. 

2. A s impl i f ied  model  
The geometry considered in Part I for the fibre-pull- 
out problem is shown in Fig. 1. A ductile fibre with 
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Figure l Schematic showing the simplified model used in analysing 
pull-out of a ductile fibre from a brittle matrix. The debond length is 
h, which consists of an elastic and a plastic zone length (hy and 
h - by). The axial stress in the fibre is ~r at z = hy, and is ~d at 
Z ~ 0 .  
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a radius, a, is located at the centre of a coaxial cylin- 
drical shell of a brittle matrix with an outer radius, b. 
A stress, ~o, is applied to the fibre in the axial direc- 
tion, z. When o0 exceeds the interfacial bond strength 
~d, interfacial debonding and sliding occur within 
a length h, such that the axial stress in the fibre is in 
equilibrium with oa at the end of the sliding zone. It 
was shown in Part I that the yield stress of a con- 
strained (that is, embedded) fibre, Or is different from 
that of an unconstrained fibre, %. When o0 reaches 
~y ,  yielding occurs, and both the plastic zone length 
(h - hy) and the debond length, h, increase with in- 
creasing or0. At the end of the plastic zone, the axial 
stress in the fibre (that is, of at z = hy) changes with 
the plastic-zone length due to the varying degree of the 
constraint which, in turn, results in a change in the 
elastic-zone length, hy, after yielding [1]. However, 
these changes in ~f at z --- hy and in hy are  negligible 
[1]. Hence, after yielding, both af at z = hy and hy are 
assumed to be constants in the present model. Fur- 
thermore, of = ~ y  at z = hy (which is the boundary 
condition at the end of the plastic zone). 

Poisson's effect along the sliding length is treated in 
an average sense in the present model. When the fibre 
remains elastic during the pull-out process, the solu- 
tions are as obtained previously [3]. However, when 
the fibre becomes ductile, the background of the ana- 
lyses in [33 is required for the present study. Hence, 
without yielding of the fibre, the analyses [3] are 
summarized in Section 2.1. When yielding occurs, the 
solutions can be obtained by modifying the analyses in 
Section 2.1 and they are presented in Section 2.2. 

tion 1) varies along the sliding length. However, when 
Poisson's effect is treated in an average sense, only the 
average values along the sliding length of both crp and 
the interfacial frictional stress, % (that is, ~p and ~) 
are considered. With a uniform ~, of varies linearly 
from o0 at the loaded surface to Oa at the end of the 
sliding zone, such that its average value along the 
sliding length is 

t~ o + O d 
Or = 2 (3) 

Substituting Equation 3 into Equation 1, ~rp becomes 

~p 
1 ~(VfErn a2Vm "~ 

fDL\ - ~176 

7 
+ + b 

(4) 

and the corresponding zi is 

where g is the coefficient of friction, and oc is the 
interfacial residual clamping stress (negative). The sign 
of the shear stress signifies the direction of shear, and 
zi is negative due to the co-ordinate system used in the 
present study. 

Adopting the average interfacial frictional stress, the 
sliding-zone length, h, is 

a(Od -- ~0) 
h - (6) 

2~i 

2.1. Elastic solutions (for ~o -< ocy) 
For a frictional interface, the axial stresses in the fibre 
and the matrix, of and ~,,, vary slowly over distances 
comparable to the fibre radius. In this case, the charac- 
teristics of stresses in any section transverse to the 
axial direction can be approximated by a Lain6 prob- 
lem, and both of and ~m can be approximated as 
being independent of the radial coordinate [4, 5]. The 
condition that the fibre and the matrix remain in 
contact during frictional sliding requires continuity of 
the radial displacement (or the tangential strain) at the 
interface. Considering the Lam6 problem and satisfy- 
ing the continuity condition, the interfacial radial 
stress, op, induced due to Poisson's effect is [3-7] 

Substitution of Equations 4 and 5 into Equation 
6 yields the applied-stress-sliding-zone-length rela- 
tion, such that, for ~0 < o~y, 

(3" 0 
{ [ 1  h}'l'( VfEm ---a2Vm ~ l  2hag-~ } 

ef b -E/J 

h}.t(vfE m a2Vm ~'~-1 
x El + ~ \  Ef b 7 S a  2 j j  (7) 

The axial displacement of the fibre at the loaded end, 
w, obtained from integration of the axial strain along 
the sliding length is 

h(crf - 2VfO'p) 
w = (8a) 

Ef 

a .oo l 
I~p ~-~ ~ L~'~ Ef + b 2- ~ a 2 o"f b2 _ a2 (l)  

where E and v are Young's modulus and Poisson's 
ratio, the subscripts f and m denote the fibre and the 
matrix, respectively, and D is given by 

b 2 + a 2 (1 -- v f )E  m 
D - + vm + (2) 

b 2 - a 2 Ef 

The axial stress in the fibre, ~f, varies along the 
sliding length due to the stress transfer. Hence, when 
Poisson's effect is considered pointwise, ~p (Equa- 

H o w e v e r ,  i~f >~ 2VfOp, and w can be approximated by 

h(oo + oa) 
w = (8b) 

2Ef 

2.2, Elastic/plastic solutions (for or0 > ~cv) 
When ~o reaches Ocy, yielding initiates at the loaded 
surface. Using the Von Mises yield criterion [8], the 
yield stress of the constrained fibre, ~cy, can be related 
to the yield stress of the unconstrained fibre, Oy, by [1 ] 

O~y = cr~ + op + ~y (9) 
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Substituting Equation 1 into Equation 9, and letting 
~o = Crcy for initiation of yielding at the loaded surface 
(where eye = ~0), trey can be solved such that 

(3" c + O'y (10) (~cy -- - -  
VfEm 
DEf 

Hence, when the fibre is under a strong residual 
clamping stress, the tensile yield stress of a constrained 
fibre can be smaller than that of an unconstrained 
fibre. However, in the absence of o~, ~oy becomes 
greater than ~y for the fibre pull-out test. 

After yielding, the debond length consists of an 
elastic- and a plastic zone length. The solutions for the 
elastic zone (that is, for hy ~ Z ~ 0 in Fig. 1) can be 
obtained from Section 2.1. by substituting ~o with 
~ y  in the solutions, and the fibre displacement at 

the plastic-zone length, h - hy ,  is 

(f (h --__hY)J't FvfEm a2Vm 

\ 2 H /  

Em ( V f E m  ~ ) 1 }  
+ H \ DEf Ocy a 

b 2 _ a 2 

2(h - hy )~O-  c 

I (h - hy)la 
x 1 + a(D + Em/2H) 

X (vfEm a2Vm Em)l 
\ Ef b E - a 2 + 2-H (14) 

The corresponding average interfacial frictional stress, 
zl, and fibre displacement (due to the plastic zone), Wp, 
are 

f(~ (VfEm \ E  
{ i= /a  c + 

a2Vm Era) ~Vfgm a2Vm gm (vfEm ~)1 ) 
b i - - a 2  -]- 2-n (Yo -~- L gf + b 2 -- a ~ + -H \ DEf ~ 

23 + Em/H 
(lSa) 

z = hy (that is, the fibre displacement in the elastic 
zone, we) is 

hy(c% + crd) 
wo = (11) 

2Ef 

The solutions for the plastic zone (that is, h > z > hy in 
Fig. 1) can be obtained by modifying the analyses in 
Section 2.1, as follows. 

If the fibre exhibits linear strain hardening, the 
plastic strains in the fibre are 1-1, 9-] 

~z p = O'f - -  O" e - -  O'p - -  (3"y (12a) 
H 

~r p = ~p = __ (~f - -  O" c - -  O'p - -  (~y (12b) 
2H 

where H is the slope of the strain-hardening curve. In 
the presence of plasticity of the fibre, the plastic-strain 
component should be included in the condition of 
continuity of the tangential strain at the interface, such 
that 

(1 - vf)(yp - v fo ' f  o'f - (Yc - O'p - O'y 

Ef 2H 

(~p -- V m O" m b -4- a 2 + Vm ) 

= Em (13) 

It should be noted that whereas the radial dependence 
of the axial stress in the matrix was considered in Part 
I (see Equation 9 in Part I), this radial dependence is 
not considered in the present model (see Equation 13). 

Using the above continuity condition, letting 
of = acy at the end of the plastic zone (that is, at 
z = hy), and repeating the calculation procedures in 
Section 2.1, the relation between the applied stress and 

I ( ~ f  1 )  ~ 0  -~- O'r 
Wp = + 2 

1 
H(~ + ~ - hy) (15b) 

The resultant fibre displacement, w, is the summation 
of the components due to displacements in both the 
elastic zone and the plastic zone, such that 

w = wo + Wp (16) 

It should be noted that the induced interfacial radial 
tension, Crp, due to Poisson's effect can compensate the 
residual clamping stress, crc, and result in a frictionless 
interface I-4, 5, 10, 11]. This would start at the loaded 
surface, where Poisson's effect is the greatest, and it is 
not considered in the averaging technique. Hence, the 
present analysis for pull-out is subjected to the condi- 
tion that the pull-out stress is limited by a critical 
value such that [5, 10, 11] 

DE~ ~ 
~o < (17a) VfEm 

when the fibre remains elastic (that is, Cro < Cr~y), and 

- Dcr~ + EmCry/2H 
O0 ~ VfEm/Ef + Em/2H (17b) 

when the fibre yields (that is, cr o > gcy). 

3. Unbonded interfaces 
For a bonded interface, the axial stress in the fibre is in 
equilibrium with the bond strength, c&, at the end of 
the debond zone. For an unbonded interface, redefini- 
tion of Cd at the end of the debond (elastic) zone is 
required. However, the solutions for the plastic zone 
are independent of the condition at the end of the 
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elastic zone. When the interface is unbonded, upon 
loading the fibre, interfacial sliding begins at the 
loaded surface and extends some depth beneath the 
surface. The end of the sliding zone is characterized by 
the condition that the axial strain in the fibre is equal 
to that in the matrix, such that 

2a 2 V m Op 
f m +  b2 _ a2 ff  -- 2VfOp 

= (at z = 0) 
Ef E m 

(18) 

Replacing the boundary condition that of = fd at 
z = 0 for a bonded interface by Equation 18 for an 
unbonded interface, and repeating the calculation pro- 
cedures in Section 2, the stress-elastic-zone-length re- 
lation for an unbonded interface is 

x[,+ (h - hy)g (vfE m a2Vm a2)] 
(22) 

The corresponding values of ~p, and Wp are 

(VfEm a2Vm h fo 
Op = \ ~ b ~ _-- a 2 ) 

(VfEm a2Vm ~ fcy 
+ \  Ef + b~ ~ a2j 2D 

Em[fo  + O'ey -- 2(Oc -F ~p-t- fy)]l/n 
+ ~ 2K ' 

(23) 

f o  ~" 
- 2hl.tfr 

h " (  VfEm -a2Vm- "~ [ h ~ l (  VfEm a2Vm ~l 
1 + ~ - ~ \  ~ b 2 - a 2 J  - 7  1 - a D \  Ee + b Z ~ a 2 J ]  

(19) 

where 

7 = 
[ a2 2a2Vm (vfEm a2Vm "~l 

b2 ~ a 2 (b 2 - a2)D \ Ef + bg T a2 J ] 

a2 E m 
x b2 _ a-----~ + E--~ 

2 (vfE m a2Vm ~2]-1 
D \ Er + b ~ ~ -aZJ (20) 

The solutions for ~rp, ti, h, and w can be obtained from 
Equations 4-6 and Equation 8 by replacing Od with 
3/o0. 

4.  P o w e r - l a w  s t r a i n  h a r d e n i n g  
The solutions for the elastic zone are independent of 
the strain-hardening behaviour of the fibre. For 
power-law strain hardening, the plastic strains can be 
described by the Ludwik equation [8] such that 

( f ~ = of - Oc - Op - Cry (21a) 
K 

( f 1 f f f  - -  f e  - -  f p  - -  f y  

a~ = a~ - 2 K 
(21b) 

where n is the strain-hardening exponent, and K is the 
strength coefficient. 

Substituting the plastic-strain component in Equa- 
tion 13 for linear strain hardening by Equation 21b for 
power-law strain hardening, and repeating the calcu- 
lation procedures in Section 2, the stress-plastic-zone- 
length relation becomes 

Oo = {[1 (h-_h_y)g(vrE,, + b' a2Vm~,'~7 
aD \ Ef ~~--2 / 1 fcY 

2(h - hy)l.tfr (h -- hy)BE m 
a aD 

{ frO + fey 
Wp = 2Ef 

+[oo+o. } 
x (h - hy) (24) 

It should be noted that the right-hand side of Equa- 
tion 22 contains fo and Op, and numerical iterations 
are required to obtain the relation between fo  and 
h - hy. The iteration procedure commences with the 
solutions for a zero plastic-zone length such that 

(3" 0 = Oey ( h -  hy ~ 0) (25a) 

VfEmfey ( h -  hy ~ 0) (25b) 
6p = DEf 

as the trial solutions. Then for a small increment of the 
plastic-zone length, the trial solutions of fo and Op are 
substituted into the right-hand sides of Equations 22 
and 23 to calculate a new pair of fo  and 6p, which are 
then used as the trial solutions. This process is iterated 
until constant values of fo  and ~p are approached, 
which are the solutions. These solutions are then used 
as the trial solutions for the next small increment of 
the plastic-zone length. The processes are repeated 
until the desired plastic-zone length is reached. 

5. R e s u l t s  
First, the simplified solutions obtained in the present 
study are compared with the previous rigorous solu- 
tions for the linear-strain-hardening case. Then, the 
solutions for the unbonded interface are presented. 
Finally, an example of the solutions for the power-law 
strain-hardening case is given. 

5.1. Comparison (for linear strain hardening) 
The material properties used in Part I (that is, 
for W-3Re fibre-reinforced TiTaA1 composites: 
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Er = 350 GPa, E,, = 215 GPa, vf = 0.28, v m = 0.238, 
c r ~ = - 8 2 3 . 5 M P a ,  c r y = l . 9 G P a ,  H = 2 5 0 G P a ,  
p = 0.2, a = 37.5 pm, b/a = 10 and crd = 80 MPa) are 
adopted for the analysis. Using Equation 10, the yield 
stress of the constrained fibre is ,-~ 1.2 GPa, which is 
in excellent agreement with the result derived in Part I. 
Both the debond length and the plastic-zone length, as 
functions of the applied stress, are shown in Fig. 2. 
Excellent agreement between the previous [1] and the 
present solutions were obtained. 

The distributions of the axial stress in the fibre and 
the interfacial shear stress along the debond length are 
shown in Fig. 3 for cro = 2.038 GPa. Excellent agree- 
ment between the previous and the present analyses 
were obtained for ere. Whereas the previous solutions 
offered the shear-stress distribution along the sliding 
length, the present solutions can only give the average 
interracial shear stresses in the plastic and the elastic 
zones. However, these average interfacial shear 
stresses are sufficient to evaluate the frictional resist- 
ance along the sliding length. 

For the shear-lag model, the solutions for the slid- 
ing displacement of the fibre at the loaded surface are 
given in the Appendix. The stress-sliding-displace- 
ment relations are shown in Fig. 4, and excellent 
agreement between the shear-lag model and the pres- 
ent simplified model was obtained. 
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Figure 2 The debond length, h, and the plastic-zone length, h - hy, 
as functions of the applied stress. ( ) simplified model, and (- - -) 
shear-lag model. 
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Figure 3 The axial stress in the fibre, crf, and the interfacial shear 
stress, - % as functions of the normalized axial position, z/a, for 
Cro = 2.038 GPa: ( - - )  simplified model, and ( - - - )  shear-lag 
model. 
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Figure 4 The stress-displacement relation: ( 
and ( - -  -) shear-lag model. 
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Figure 5 The sliding length, h, and the plastic-zone length, h - hy, 
as functions of the applied stress for a bonded interface 
(crd = 80 MPa) and an unbonded interface. 

5.2. U n b o n d e d  in ter faces  
When the interface is unbonded, crf at the end of 
sliding zone is not a constant; it is proportional to the 
applied stress (that is, crd = ?cr0). Using the material 
properties in Section 5.1, but replacing crd = 80 MPa 
by the condition for an unbonded interface (that is, by 
Equation 18), the calculated sliding length and the 
plastic-zone length are shown in Fig. 5. The solutions 
for a bonded interface, crd = 80 MPa, are also shown. 
Both the bonded and the unbonded interfaces have 
the same plastic-zone length. Compared to the bonded 
interface, the unbonded interface has a greater sliding 
length. 

5.3. Power-law strain hardening 
The numerical solutions presented in Section 4 can be 
confirmed by using n = 1 and K = H. In this case, the 
power-law strain hardening becomes linear strain 
hardening, and the calculated results from numerical 
iterations should be identical to those from the ana- 
lytical solutions presented in Section 2. Using 
K = 250 GPa, the calculated debond length and the 
plastic-zone length are shown in Fig. 6 for different 
values of n. The plastic strain decreases with decreas- 
ing n. While the elastic-zone length is not influenced 
by the power-law strain hardening, the plastic-zone 
length (and hence the debond length) decreases with 
decreasing n. 
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Figure 6 The debond length, h, and the plastic-zone length, h - h y ,  

as functions of the applied stress for linear strain hardening (n = 1) 
and power-law strain hardening (n = 0.3). ( ) debond length, h/a, 
(- - -) plastic zone length (h - hy)/a. 

6. Conclusion 
During fibre pull-out, the stress is transferred from the 
fibre to the matrix through the interfacial shear stress. 
An interfacial radial stress is induced due to axial 
loading on the fibre and the constraint at the interface 
(that is, Poisson's effect). When the interface is bonded, 
the interfacial shear stress is insensitive to the change 
of the interfacial radial stress induced by Poisson's 
effect. However, when the interface is debonded and is 
subjected to Coulomb friction, Poisson's effect plays 
an important role on the interfacial shear stress. Con- 
sidering Poisson's effect along the sliding length, 
pointwise, stress analyses for pull-out of a ductile fibre 
from a brittle matrix were made in Part I using 
a shear-lag model. However, the solutions are formi- 
dable, which, in turn, results in an obstacle to their 
further application. Also, the analyses in Part I are 
limited to the conditions that the interface has a con- 
stant bond strength and the fibre is linear strain 
hardened. 

In the present study, Poisson's effect along the slid- 
ing length was treated in an average sense, and both 
the stress analysis and the solutions for pull-out of 
a ductile fibre from a brittle matrix are greatly simpli- 
fied. The simplified solutions obtained in the present 
study were compared to the previous complicated, 
rigorous solutions, and excellent agreement was ob- 
tained. The simplified model thus provides adequate 
solutions for pull-out of a ductile fibre from a brittle 
matrix. This averaging technique was then applied to 
the case of an unbonded interface and to power-law 
strain hardening of the fibre. 

Appendix 
Fibre displacement from the shear-lag model [1]. The 
axial displacement of the fibre can be obtained by 
integrating the axial strain along the debond length. 
The displacements due to the elastic zone and the 
plastic zone, we and Wp, are: 

We = E f  { A  2 2 - me 

+ B [ e x p ( m l z ) - - l - - e x p ( m 2 z ) - i  m2 

[ e x p  (m2g) - 1]Od[ 
+ (Al) 

J m2 

Wp = + 

x [z  - h , -  
[ B 2  [_ n 2 e x p ( n 2 h )  .J 

C V exp(nlz) - exp(nl hr) + 
/ nl  

expr(nl - n2)h] [exp(n2z) - exp(nEhy)]q 

J n2 

+ [exp(nEz) ~ exp(n2hy)]Oo] 

n 2 exp(n2 h) J 

a {B3 [-exp(n2hy) - -  exp(n2z)-] 

+ exp(n2h) _J 

+ C[exp(nlz) -- exp(nlhy) 

- exp[(nl - n2)h] 

x {exp(n2z) - exp(n2hy)}] 

+ [-exp(nEz) ~ exp(n2hy)lo0 } 
L exp(n2h) J 

(z -- hr)o r 
(A2) 

H 

The parameters in Equations A1 and A2 are defined in 
[U. 
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